Solution to Problem 88 of the 2001 Physics GRE

July 19, 2012

Recall the Biot-Savart Law, which states that

$$
\frac{\mu_{0} I}{4 \pi} \int \frac{d \mathbf{l} \times \hat{\mathbf{r}}}{r^{2}}
$$

where \mathbf{r} is the displacement vector from the element $d \mathbf{l}$ to the point where the magnetic field is being evaluated. In our case, the magnetic field at the point P is due only to the curved portions of the wire. Furthermore, in those curved portions, the vector \mathbf{r} is always perpendicular to the vector $d \mathbf{l}$. Furthermore, the magnitude of the vector \mathbf{r} is constant and always equal to R. So, the integral becomes

$$
\frac{\mu_{0} I}{4 \pi} \int \frac{d \mathbf{l} \times \hat{\mathbf{r}}}{r^{2}}=-\mathbf{z} \frac{\mu_{0} I}{4 \pi} \int_{0}^{\theta} \frac{1}{R^{2}} R d \theta^{\prime}=-\mathbf{z} \frac{\mu_{0} I}{4 \pi} \frac{\pi \theta}{R}=-\mathbf{z} \frac{\mu_{0} I \theta}{4 \pi R}
$$

We are only asked for the magnitude of the magnetic field vector, therefore the answer is

$$
\left|-\mathbf{z} \frac{\mu_{0} I \theta}{4 \pi R}\right|=\frac{\mu_{0} I \theta}{4 \pi R}
$$

Therefore, the correct answer is (C).

